首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  1篇
植物保护   1篇
  2017年   1篇
  2007年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
冻融对伊犁草地土壤水稳性大团聚体的影响   总被引:1,自引:0,他引:1  
以伊犁托乎拉苏大草原土壤为研究对象,进行0~20 cm草地表层土壤混合样品多点采集,实验室内依据干筛法取得各粒级大团聚体,模拟不同含水率、冻融试验,利用湿筛法获得每种粒级的水稳性大团聚体质量,对实验数据进行统计分析,研究草地土壤在冻融环境条件下其水稳性大团聚体的特征、变化规律及其机理。研究结果表明:(1)初始水分含量是影响土壤水稳性大团聚体的关键因素。随着土壤初始含水率的提高,5 mm、5~4mm、4~2 mm、2~1 mm四个粒径组水稳性团聚体,呈现出逐渐降低、或先升高后降低的变化趋势;1~0.5 mm、0.5~0.25 mm呈现先降低后增加、或先增加后降低再增加的趋势。(2)冻融循环次数是影响土壤水稳性大团聚体的重要因素。随冻融循环次数的增加,各组粒级水稳性团聚体表现出的规律性不尽相同,1 mm水稳性团聚体整体有降低趋势,1~0.5 mm、0.5~0.25 mm两组粒径水稳性团聚体则整体呈现增加趋势。(3)冻结温度是影响土壤水稳性大团聚体的另一重要因素,随着冻结温度的降低,5 mm与5~4 mm水稳性团聚体有降低的趋势,1~0.5 mm与0.5~0.25 mm水稳性团聚体有升高的趋势,4~2 mm与2~1 mm两个粒级水稳性团聚体并无显著变化。  相似文献   
2.
《Applied soil ecology》2007,35(2-3):125-139
The toxic effect of chromate on soil microbial communities is not well documented, although microorganisms control biogeochemical cycling, contribute to formation of soil structure, regulate the fate of organic matter applied to soil. In this study the effects of short- and middle-term chromate on the soil microbial community were investigated. The shifts in the size and in the diversity of culturable heterotrophic bacterial community, the resistance to Cr(VI) of heterotrophic bacteria, the presence of cyanobacteria, the activity of 19 enzymes, and the ATP content were monitored over time (120 days) in soil microcosms artificially contaminated with three concentrations of chromate (50, 250 and 1000 mg kg−1 soil). The chromate contamination affected the structure and the diversity of the soil bacterial community. Bacterial strains isolated from the microcosm contaminated with the highest concentration of chromate were identified by 16S rDNA gene sequencing. All isolates belonged to the genus Pseudomonas, were able to reduce Cr(VI), and showed a high resistance to chromate. To our knowledge, this is the first report that shows Pseudomonas strains having the capability to resist up to 40 mM of Cr(VI) on minimal medium. The cyanobacterial group was more sensitive to chromate contamination than culturable heterotrophic bacteria. No cyanobacterial growth was detected in enrichment cultures from the soil polluted with the highest chromate concentration. Some enzymes were inhibited by high concentrations of chromate, whereas others were stimulated. The ATP content in microcosms was strongly affected by chromate. We conclude that the soil microbial community responds to chromate pollution through changes in community structure, in metabolic activity, and in selection for Cr(VI)-resistance.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号